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Abstract 

The transport systems required to feed a beam of highly relativis
tic electrons into a free electron laser have to satisfy very stringent 
requirements with respect to isochronicity and achromaticity. In ad
dition, the line has to be tunable to match different operating modes 
of the free electron laser. 

Various beamlines emphasizing different aspects, such as quality 
of isochronicity and achromaticity, simplicity of the design, and space 
configurations are shown and compared. Solutions are presented hav
ing time resolution in the range of 2 to less than 0.5 picoseconds for 
one percent of energy spread. 

1 Introduction 

In the fra mework of the proposed Combustion Dynamics Facility at Lawrence 
Berkeley Laboratory [1], a tunable infrared free electron laser is planned. The 
energy of the elect rons produced by the LIN AC will range from about 25 to 
50 MeV, and they will occupy a phase-space area of about 0.'1 x 0.5 mm-rnrad 
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in both the vertical and the horizontal directions. The energy spread of the 
system is about 0.5 %. 

These electrons have to be transported from the LINAC to the undulator 
of the laser in which they have to travel parallel with the light. In order not 
to interfere with the optical mirrors of the laser, the beam has to be offset 
horizontally from the accelerator axis to the light axis. The schematic layout 
of a free electron laser is shown in Figure l. 

Inside the optical cavity, the electron and light beam bunches must over
lap horizontally and vertically as well as longitudinally. In order not to 
disturb the lasing process, it is very important that overlapping does not 
change over time. In particular, it should not be affected by the energy jitter 
of the LIN AC, which is in the order of 0.05 %. 

The horizontal independence of bunch shape can be achieved with an 
achromatic system. The longitudinal stability requires isochronicitYi in par
ticular, the flight time should not depend on the electron's energy. To be 
specific, linear time of flight effects should be less than 2 psec per 1 % relative 
difference in energy. This is necessary because the 0.05 % energy fluctuation 
must not cause a time fluctuation greater than 0.1 psec. 

Besides these boundary conditions, there are geometric limitations. The 
offset should be large enough to not interfere with the optical mirrors. In 
addition, the length of the transport system should not exceed about 7m. 
Furthermore, the high energy of the electrons, which entails a maximum 
rigidity of 0.168 Tm, limits the bending radii of magnets to about 30 cm in 
order to stay in the .5 Tesla regime. 

The high energy of the electrons entails that since the particles move 
essentially with the speed of light, energy differences do not translate into 
velocity differences, and thus drift regions and non-bending elements do not 
introduce time of flight effects. The only time of flight terms come from 
bending elements and later cross coupling. 
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2 Achromaticity and Isochronicity 

In this section we will discuss the achromaticity and isochronicity require
ments of the system. The study and understanding of achromatic systems is 
almost as old as particle optics [2, 3]. A system is called achromatic if to first 
order, the final trajectories after the system do not depend on the energy of 
the particle. Using the standard notation for transfer matrix elements, this 
means 

(x,d) = (a,d) = O. (1) 

If only (x, d) = 0 at a certain point, a system is called dispersion free at 
that point. Note that achromaticity is a global property that holds over at 
least a field free region, while being dispersion free is a local property that 
holds at only one point. 

There are numerous ways to design achromatic systems [2 , 3], and also 
higher order achromats are known [4, 5]. One can easily see [2] that achro
maticity in a bending system requires at least two bending magnets. They 
are arranged in such a way that their chromatic effects cancel. 

As discussed in the previous section, PEL beamlines do not only have to 
be achromatic, but they also have to preserve the timing of the bunches very 
accurately. This means that in addition to the requirements of achromaticity, 
we must satisfy the first order conditions 

(t,x) - 0 

(t,a) - 0 

(t,d) - 0 

(2) 

(3) 

(4) 

or at least mInimize the terms according to the above requirements. 
Isochronous systems have also been studied long ago, and it was soon con
cluded that an isochronous bending system has to contain at least three 
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bending magnets [2]. An important fact for the design of isochronous sys
tems comes from the symplectic structure of phase space maps. In [6] we 
showed that symplecticity entails interconnections between matrix elements. 
In particular, one obtains in the case of midplane symmetry that 

(t, x) F· [(x, x)(a, d) - (a, x)(x, d)] 

(t,a) - F.[(x,a)(a,d)-(a,a)(x,d)] 
(5) 

(6) 

where the factor F only corrects for the usual scaling of the variables 
[7,8]. This entails that an achromatic system automatically satisfies (t, x) = 
(t,a) = O. Thus the only time of flight term causing lack of isochronicity 
is the term (t, d) . To second order, the situation is similar. Symplecticity 
entails that 

(t, xx) = F · [(x, x)(a, xd) - (a, x)(x, xd) + (x, xx)(a, d) - (a, xx)(x, d)] 

(t,xa) = F· [(x, x)(a, ad) - (a,x)(x,ad) + (x, xa)(a, d) - (a,xa)(x,d)] 

(t, xd) = F· [(x, x)(a, xd) - (a, x)(x, dd) + (x, xd)(a, d) - (a, xd)(x, d)] 

(t, aa) = F · [(x,a)(a,ad) - (a,a)(x,ad) + (x,aa)(a,d) - (a, aa)(x, d)] 

(t, ad) = F · [(x,a)(a,dd) - (a,a)(x,dd) + (x,ad)(a,d) - (a,ad)(x,d)] 

(t, yy) = F· [(y,y)(b,yd) - (b,y)(y,yd) + (x, yy)(a, d) - (a,yy)(x,d)] 

(t,yb) = F· [(y,y)(b,bd) - (b,y)(y,bd) + (x, yb)(a, d) - (a,yb)(x,d)] 

(t,bb) = F· [(y, b)( b, bd) - (b, b)(y, bd) + (x, bb)( a, d) - (a, bb)( x, d)]. (7) 

So the only "free" second order time of flight term is (t, dd). Note that 
from these equations it follows that all time of flight matrix elements from 
(t,xx) through (t, bb) vanish for a second order achromat. Thus, a second 
order achromat that satisfies (t, dd) = 0 is isochronous. 

In the next section we will show three different solutions for achromatic 
beamlines which meet the isochronicity requirements presented in the previ
ous section. The systems differ in simplicity, geometric layout, and degree 
of isochronicity. Note that the phase space volume is so small that most of 
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the time higher order effects do not have to be corrected. Especially in the 
case of the fully isochronous system, however, it is necessary to choose the 
parameters of the systems such that second order effects stay within bounds. 

The calculations have been performed with COSY INFINITY [9, 10, 11] 
and COSY 5.0 [8, 12, 13]; because of the phase space parameters, the high
order features of these programs are not needed, and any other design code 
[14,15,16, 17, 18] could have been used. However, the powerful input lan
guage of COSY INFINITY allowed very efficient and flexibles optimization 
strategies consisting of nested optimizations and manual tuning without ever 
leaving the program. 

3 A Simple Four Magnet Achromatic Beam
line 

In this section we will show a simple achromatic beamline consisting only 
of four n = 1/2 bending magnets. The system is not fully isochronous, the 
term (t, d) is not corrected. However, since the left over term is usually quite 
small, the system can be used in practice. In the next section we will present 
a system with the same flavor, in which, however, the term (t, d) is also 
corrected. 

The four cell system consists of identical combined-function magnets that 
are placed in series like a double S, where each of the magnets is preceded 
and followed by an identical drift. The length of the drift is chosen such that 
the subsystem drift-magnet-drift performs parallel-to-point imaging. 

When two such cells are placed behind each other in a mirror-symmetrical 
way, bending in opposite directions , the resulting two-cell system is dispersion
free and produces unmagnified x and y images. Furthermore, (t,a) vanishes 
automatically. When two of these two-cell systems are placed in series, the 
transfer matrix becomes unity in the horizontal and vertical planes, and in 
particular the system is fully achromatic. Thus, all of the linear time of flight 
matrix elements but (t, d) vanish. So we have to search parameters for the 
system that make (t, d) small enough. 
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It turned out that the value of (t, d) is roughly proportional to the total 
horizontal offset of the system. So the smaller (t, d) has to be chosen, the 
smaller the total offset becomes. The following parameters describe a system 
that produces a total offset of about 18 cm and has an isochronous defect of 
almost 2 psec per percent of energy spread. 

Drift 
Bending Magnet 
Drift 

length 1.702 m 
radius 0.4 m, 
length O.lm 

angle 26 degrees, 

This system has the following linear transfer map: 

1 2.104 0 0 0 
0 1 0 0 0 
0 0 1 2.104 0 
0 0 0 1 0 
0 0 0 0 -0.0561 

inhomogeneity 0.5 

(8) 

Figure 2 shows some characteristic rays going through the system, and 
Figure 3 shows the total time of flight aberrations as a function of position 
in the system. Unfortunately, the maximum total offset of about 18 cm for 
the required time of flight aberrations is very tight, imposing restrictions on 
the fabrication and mounting of the optical mirrors. 

4 A Fully Isochronous Beamline 

In this section, we discuss a system with a similar flavor as the one discussed 
in the previous section. However, by using additional quadrupoles, full first 
order isochronicity is achieved. 

The general layout of the system is again a double S arrangement. Fur
thermore, the second and fourth cells are mirror images of the first and third 
cells. Instead of a combined function magnet we here use a dipole. The cell 
is point-to-parallel in the x direction, which means that the matrix element 
. ( a, a) vanishes. There are no special requirements for the y motion, except 
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that it should stay well contained . These two requirements can be achieved 
easily by using two quadrupoles before the bending magnet. 

We also demand that, after two cells, the chromatic time of flight term 
(t, d) must vanish. This can be achieved by placing a suitable quadrupole in 
the center between the bending magnets. 

Again, after four cells arranged as a double S, the matrix in the x direction 
becomes unity, so the system is fully achromatic to first order. Furthermore, 
because (t, d) vanishes for each double cell , it also vanishes for the whole 
system. Thus the system is fully isochronous. The linear matrix in the y 
plane is not unity; the quadrupoles are merely chosen such that its elements 
stay well contained. The parameters of the elements in each cell are as 
follows: 

Drift length 100 em 
Quadrupole length 20 em, aperture 3 em, strength 0.07946 T 
Drift length 15 em 
Quadrupole length 20 em, aperture 3 em, strength -0.07000 T 
Drift length 15 em 
Bending magnet radius 0.04 m, angle 45 deg, homogenous 
Drift 15 em 
Quadrupole length 20 em, aperture 3 em, strength 0.05561 T 

The bending angle of 45 degrees corresponds to a strength of the central 
quadrupoles (located between the dipoles) that is not excessive. The focal 
length of the cell is chosen to be about 2 m to satisfy the geometrical require
ments. Given the bending angle and the focal length , narrow bounds result 
for the bending radius and therefore the strength of the dipole field. In our 
solution the strength of the dipole field turns out to be moderate with less 
than 0.5 T. 

After the strength of the central quadrupole was determined, the strengths 
of the quadrupoles upstream from it were chosen such that the cell is point-to
parallel and has an acceptable y displacement. The system has the following 
linear transfer matrix: 

7 



1 11.035 0 0 0 
0 1 0 0 0 
0 0 0.54080 1.3362 0 (9) 
0 0 -0.52952 0.5408 0 
0 0 0 0 0 

Figure 3 shows the trajectories of several principal rays through the sys
tem. It can be seen that the first bending magnet introduces chromatic effects 
that disappear again after the last bending magnet. Figure 4 shows the sum 
of absolute values of the time of flight aberrations. All of these aberrations 
vanish after the last dipole. 

5 A More Involved Two Magnet Beamline 

In this section, we will present an achromatic system based on a different 
approach that is not fully isochronous, but the remaining (/, d) is very smal l. 
It will turn out that for the required offset, this system has a much smaller 
(/, d) than the one discussed in section 3. The system has a rough similarity 
with the one proposed in the FELIX study [19], but outperforms it as far as 
beam sizes and time of flight aberrations are concerned. 

The system consists of a mirror symmetric arrangement of two identical 
cells. The cell consists of a drift of arbitrary length, followed by a bending 
magnet, and another drift in the middle of which a quadrupole is placed. The 
strength of the quadrupole is chosen such that the cell is dispersion-free after 
the second drift, i.e. (x, d) = O. It is easy to see that a system consisting of 
two such cells placed in mirror symmetry and bending in different directions 
is achromatic. In order to be able to counterbalance the action of the two 
quadrupoles, a third quadrupole is placed in the center between them, and 
the strength of the two outer quadrupoles is readjusted accordingly. 

The cell of the system has the following parameters: 
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Drift length .2m 
Bending magnet radius 0.5m, angle 25 deg, homogeneous 
Drift length 0.4 m 
Quadrupole length 0.2m, aperture 3 cm, strength 0.10525 T 
Drift length 0.3m 
Quadrupole length 0.1 m, aperture 3 cm, strength -0.0850 T 

This system has the following first order transfer matrix: 

0 0 0 0 0 
3.0662 6.6469 0 0 0 
1.2640 3.0662 0 0 0 

(10) 
0 0 1.1801 2.0575 0 
0 0 0.19086 1.1801 0 
0 0 0 0 0.0129 

The remaining time of flight term is about 0.4 picoseconds per percent 
of energy spread, certainly much below the requirement. Furthermore, the 
total offset of the system is about 95 cm, avoiding interference of the electron 
beam and the optical system. 

6 Comparison of the three systems 

In this section we summarize the details of the previous three sections and 
provide a direct comparison of the systems. The key quantities for the anal
ysis of performance are isochronicity and offset. The price of the system is 
determined mainly by the number of components, so we list the required 
number of magnets and quadrupoles. Vie also give the maximum 10' beam 
width which determines the size of the tube; because of radiation it is advis
able to contain up to 40' inside the pipe. 
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System 1 System 2 System 3 
number of magnets 4 4 2 
number of quadrupoles 0 10 3 
total offset 0.19 m 1.46 m 0.95 m 
time of flight errors 2 psec / 1 % 0.1 psec / 1 % 0.4 psec / 1 % 
maximum beam width 3mm 6mm 3 mm 

7 Matching the Beam to the FEL 

Besides the transport of the beam, the beamline also has to generate the 
proper shape of the beam inside the Undulator. The beam envelope in the 
x direction must be focused to a waist at the center of the undulator. The 
beta function at the waist, the ratio between the beam's size and its angular 
divergence, should be about 1 meter, i.e., half the undulator length. In 
the y direction, the beam envelope is focused to a waist at the beginning 
of the undulator, then maintains a constant value due to focusing by the 
alternating field of the undulator magnet. The value of the beta function in 
the y direction should be adjustable between about 0.25 m and 1.1 m. 

This task is best decoupled from the rest of the system, and performed by 
a quadrupole triplet placed behind the beamline. Note that such quadrupoles 
have no effect on the achromaticity of the system; they also do not affect 
linear time of flight properties because the electrons are highly relativistic. 

The strengths of the three quadrupoles are varied to achieve the different 
beta functions. For the second and third systems, solutions have been found 
for a variety of beta-y values between 0.3 and 1.1 m, requiring field strengths 
between 0.02 and 0.08 tesla. 
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8 Beam Diagnostics and Transport to the 
Beam Dump 

After the electron beam has passed through the Undulator of the free electron 
laser, it has to be transported to a beam dump. Furthermore, it is desirable 
to be able to analyze the beam parameters. While the determination of the 
beam position is easily done using beam position monitors, it is important 
to have information about the beam's energy and time distributions. In 
particular, it is helpful to have 2 dimensional information in the form of an 
energy-time plot. 

To achieve this goal, we propose a system similar to one used in Los 
Alamos [20]. It consists of a bending magnet acting as an energy separator 
combined with a fast deflector that deflects a beam bunch in the y direction. 
By sweeping the field of the deflector while a bunch travels through it, the 
vertical bending angle produced by the deflector that an electron experiences 
is a measure for the time at which it passed the deflector. Using this scheme, 
one can put a quartz screen at the image point of the separator magnet and 
read off the requested two dimensional picture with a camera. 

The system we propose here has the following form: 

Fast and 
Bending magnet 
Drift 
Drift 
Quadrupole 
Drift 

slow deflectors, 
radius 0.5m, 
length 1.7 4m 
length 10 cm 
length 0.2m, 
length 1m 

total length 0.8 m 
angle 90 deg, n= .5 

aperture 3 cm, strength .03 T 

This system produces a stigmatic image after the 1.74m drift. At this 
point, the dispersion is such that a beam energy spread of .5 % corresponds 
to about 1 cm, a value similar to the one in the Los Alamos setup. The image 
point is followed by a short drift and a quadrupole which slightly focuses the 
off energy electrons. About 1 m behind the quadrupole is a good place for 
the beam dump. At this point, the beam has a diameter of about 5 mm and 
is approximately round . 
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Figure captions 

Figure 1: A schematic layout of a free electron laser. 

Figure 2: A simple four cell combined function magnet achromat without 
quadrupoles and with a remaining time of flight aberration of about 2 psec. 

Figure 3: The value of the total time of flight aberration as a function of 
position in the system of figure 2. 

Figure 4: A more advanced 4 cell first order achromat which is also fully 
isochronous. 

Figure 5: The value of the total isochronicity as a function of position in 
the system of figure 4. 

Figure 6: A relatively simple two cell achromat that has a very small 
chromatic time of flight distortion and provides a large horizontal offset. 

Figure 7: The value of the total time of flight aberration as a function of 
position in the system of figure 6. 
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